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Abstract: - This article presents the design of a new asynchronous early output full adder which when cascaded 
leads to a relative-timed ripple carry adder (RCA). The relative-timed RCA requires imposing a very small 
relative-timing assumption to overcome the problem of gate orphans associated with internal carry propagation. 
The relative-timing assumption is however independent of the RCA size. The primary benefits of the relative-
timed RCA are processing of valid data incurs data-dependent forward latency, while the processing of spacer 
involves a very fast constant time reverse latency of just 1 full adder delay which represents the ultimate in the 
design of an asynchronous RCA with the fastest reset. The secondary benefits of the relative-timed RCA are it 
achieves good optimization of power and area metrics simultaneously. A 32-bit relative-timed RCA constructed 
using the proposed early output full adder achieves respective reductions in forward latency by 67%, 10% and 
3.5% compared to the optimized strong-indication, weak-indication, and early output 32-bit asynchronous 
RCAs existing in the literature. Based on a similar comparison, the proposed 32-bit relative-timed RCA 
achieves corresponding reductions in cycle time by 83%, 12.7% and 6.4%. In terms of area, the proposed 32-bit 
relative-timed RCA occupies 27% less Silicon than its optimized strong-indication counterpart and 17% less 
Silicon than its optimized weak-indication counterpart, and features increased area occupancy by a meager 1% 
compared to the optimized early output 32-bit asynchronous RCA. The average power dissipation of all the 
asynchronous 32-bit RCAs are found to be comparable since they all satisfy the monotonic cover constraint. 
The simulation results obtained correspond to a 32/28nm CMOS process.              
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1 Introduction 
The Semiconductor Industry Association’s 
International Technology Roadmap for 
Semiconductors (ITRS) [1] has identified design for 
variability as one of the futuristic grand challenges 
for design technology. The percentage of design 
reuse in system-on-chip designs which was 
estimated to be 46% in the 2009 ITRS edition is 
expected to become 96% by the year 2024. Further, 
the proportion of design blocks reuse with respect to 

glue logic is expected to reach 60% by 2024. 
Moreover, parameter uncertainty as a percentage 
effect on sign-off delay is expected to increase to 
32% by 2024. In this backdrop, a robust flavor of 
asynchronous design which employs delay-
insensitive data codes for data representation and 
processing, and the 4-phase return-to-zero (RTZ) 
handshaking protocol for communication is forecast 
to be a strong contender or an inevitable counterpart 
to conventional synchronous design for 
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implementing digital circuits and systems in the 
nanoelectronics regime. This is because robust 
asynchronous designs1 are inherently modular (i.e. 
permits design reuse) [2], are self-checking [3], 
exhibit superior EMI compatibility [4], are noise-
tolerant [5], have the ability to cope with parametric 
uncertainty, supply voltage, threshold voltage and 
temperature variations [6] [7], consume power only 
when and where active [8], and are able to guarantee 
greater security and robustness against hostile 
attacks compared to synchronous designs in the case 
of sensitive industrial applications [9] [10]. Taking 
cognizance of these facts, the ITRS design report 
has projected a growing requirement for 
asynchronous signaling in the nanoelectronics era 
and also emphasizes on the continuous development 
of asynchronous circuit and system design tools.   
     This article presents the design of a new 
asynchronous early output full adder, which when 
cascaded leads to an asynchronous RCA that 
necessitates employing a very small relative-timing 
assumption to overcome the problem of gate 
orphan(s) resulting from internal carry propagation. 
An asynchronous RCA incorporating the relative-
timing assumption(s) is called relative-timed RCA.  
     In the rest of this article, Section 2 provides 
background information relating to delay-insensitive 
data encoding, 4-phase RTZ handshaking, and 
indication (i.e. acknowledgment) in the context of 
an asynchronous system. The proposed early output 
asynchronous full adder is presented in Section 3 
and its operation is discussed for three possible 
scenarios viz. carry propagation, carry generation 
and carry kill. The necessity for imposing relative-
timing assumption(s) in an RCA formed using the 
proposed early output full adder is described in 
Section 3, and the factual relative-timing 
assumption required is also estimated. Section 4 
presents the simulation results obtained for various 
32-bit asynchronous strong-indication, weak-
indication, early output, and relative-timed RCAs. 
The simulation results correspond to power, forward 
latency, and area. Since the estimation of cycle time 
of asynchronous logic designs at the gate level is 
infeasible using a commercial synchronous tool, a 
theoretical calculation of cycle time of the various 
32-bit asynchronous RCAs is presented by assuming 
different carry propagation lengths within the RCAs 

                                                 
1 Asynchronous design, in this paper, generally refers to a robust flavor 
which employs delay-insensitive data codes and incorporates 4-phase 
(return-to-zero) handshaking unless otherwise stated. The term ‘robust’ 
may be optionally used as a suffix to emphasize the robustness attribute 
of the asynchronous design described.    

and these are also given in Section 4. Finally the 
conclusions are stated in Section 5.  
 
 

2 Background  
An asynchronous logic block comprising an 
asynchronous digital system represents the 
combinational logic equivalent of a synchronous 
digital system [11] [12]. Asynchronous logic blocks 
constructed using delay-insensitive data codes and 
adhering to the 4-phase RTZ handshaking protocol 
are robust.  
     The dual-rail code is the simplest member of the 
generic family of delay-insensitive data codes [13], 
based on which a data wire X is represented using 
dual data wires X1 and X0 as shown in Fig 1. X = 1 
is represented by X1 = 1 and X0 = 0, and X = 0 is 
represented by X1 = 0 and X0 = 1. These two 
conditions represent ‘valid data’, and the condition 
of both X1 and X0 assuming 0 is referred to as the 
‘spacer’. The 4-phase RTZ handshaking procedure 
requires that the application of inputs from the 
external environment follows the defined sequence: 
valid data-spacer-valid data-spacer, and so forth. 
     The representative block diagram of a typical 
asynchronous system stage is shown in Fig 1 that is 
accompanied by the sender-receiver analogy. The 
valid data and spacer processing operations of an 
asynchronous system stage are explained in [11] 
[12], and the avid reader is referred to the same. In 
Fig 1, the junction dots shown enclosed within the 
blue ovals in dotted lines represent isochronic fork 
junctions. Isochronicity constitutes the weakest 
compromise to delay-insensitivity [14], and an 
isochronic fork junction implies that all the nets 
forking out from the junction tend to experience 
similar signal transitions occurring simultaneously.   
 

 
 

Fig 1. Block diagram of an asynchronous system 
stage correlated with the sender-receiver analogy 
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     Referring to Fig 1, the 4-phase RTZ protocol is 
explained as follows. The dual-rail data bus that 
feeds the current stage register (sender) is initially in 
the spacer state, and the common acknowledge input 
(ackin) for the current stage register is binary 1, 
since the common acknowledge output (ackout) 
provided by the next stage register (receiver) is 
binary 0. The current stage register now transmits a 
code word, i.e. valid data. This results in low to high 
transitions on anyone of the corresponding rails of 
all the dual-rail bus wires which feed the 
asynchronous logic block. After the next stage 
register receives a code word subsequent to 
completion of data processing in the asynchronous 
logic block, it drives ackout to 1, and ackin assumes 
0. The current stage register waits for ackin to 
become 0 and then resets the data bus, i.e. the data 
bus feeding the asynchronous logic block is driven 
to the spacer state. After an unbounded but finite 
and positive amount of time taken for the resetting 
of the asynchronous logic block and the passage of 
spacer to the following register stage, the next stage 
register drives ackout (ackin) to 0 (1). With this, a 
single data transaction is said to be complete, and 
the asynchronous system is ready to commence the 
next data transaction.  
     Asynchronous logic blocks are classified as 
strongly indicating [15] [16] [49], weakly indicating 
[15] [17] [49], and early output type [18] [19]. 
Indication means providing acknowledgment for the 
receipt of primary inputs through the primary 
outputs whilst involving the intermediate outputs. 
With respect to the asynchronous system stage 
shown in Fig 1, the indication mechanism may be 
local or global [20]; local – if the asynchronous 
logic block within the asynchronous system stage by 
itself indicates the receipt of all the primary inputs, 
and global – if the asynchronous system stage on the 
whole indicates the receipt of all the primary inputs 
by the asynchronous logic block contained within it. 
It has been recently shown in [21] that local weak-
indication is indeed preferable compared to global 
weak-indication for asynchronous systems from a 
power-cycle time-area perspective.      
     The input-output timing relationship of strong-
indication, weak-indication, and early output type 
asynchronous logic blocks is illustrated by the 
representative timing diagram shown as Fig 2. A 
strong-indication asynchronous logic block starts to 
produce the requisite primary outputs only after 
receiving all the primary inputs whether they are 
valid data or spacer. A weak-indication 
asynchronous logic block starts to produce some 
primary outputs after receiving a subset of the 
primary inputs. However, the production of at least 

one primary output is withheld till all the primary 
inputs are received. The early output asynchronous 
logic block is in fact more relaxed compared to the 
strong and weak-indication asynchronous logic 
blocks in that it could produce all the primary 
outputs after receiving just a subset of the primary 
inputs. The early output asynchronous logic block is 
further subdivided into 2 types as early set and early 
reset. The early set type asynchronous logic block is 
capable of producing all the valid primary outputs 
after receiving just a subset of the valid primary 
inputs. On the other hand, the early reset type 
asynchronous logic block is capable of producing all 
the spacer primary outputs after receiving just a 
subset of the spacer primary inputs. Hence the early 
output asynchronous logic block would be 
categorized as either early set or early reset type, 
and their respective behaviors are portrayed by the 
green and pink ovals shown in dotted lines in Fig 2.  
 

Inputs 
arrival

All

None

All

None

Outputs 
productionStrong-indication

All

None

Outputs 
production

Weak-
indication

All

None

Outputs 
productionEarly output

Early set Early reset  
 

Fig 2. Input-output timing relationship of strong-
indication, weak-indication, and early output 

asynchronous logic blocks 
 
 

3 Proposed Early Output Full Adder 
and Relative-Timed RCA  
The proposed asynchronous early output full adder 
corresponding to early reset type is shown in Fig 3, 
which is designed using 11 logic gates. Of these, 
there are 3 simple gates marked as AND1, AND2 
and OR, and 8 complex gates referred by CG1 to 
CG6 and CE1 and CE2 in Fig 3. Complex gates 
CG1 to CG5 are referred to as AO22 gates in the 
digital cell library [22]. The AO22 gate with inputs 
A, B, C, D and output Y implements the logic 
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function Y = AB + CD. The complex gate CG6 in 
Fig 3 is referred to as the AO21 gate in the standard 
cell library [22] and implements the logic function Z 
= PQ + R, where P, Q, R represent the inputs and Z 
represents the output. Gates marked CE1 and CE2 
represent 2-input C-elements, which are realized 
using the AO222 gate with feedback [12]. The 
Muller C-element, introduced in [23], is not only a 
logic gate but also a state holding register. It outputs 
1 only if all its inputs are 1, and likewise outputs 0 
only if all its inputs are 0. If its inputs are different, 
the C-element would maintain its existing state.    
 

 
 

Fig 3. Proposed early output full adder 
 

     In Fig 3, (A1, A0), (B1, B0) and (CIN1, CIN0) 
represent the dual-rail augend, addend and carry 
inputs, and (SUM1, SUM0) and (COUT1, COUT0) 
represent the dual-rail sum and carry outputs 
respectively. The fundamental equations governing 
the dual-rail sum and carry outputs of the 
asynchronous full adder are given by (1) to (4).  
 
SUM1 = A0B0CIN1 + A0B1CIN0 + A1B0CIN0  
              + A1B1CIN1                             (1) 
 
SUM0 = A0B0CIN0 + A0B1CIN1 + A1B0CIN1  
              + A1B1CIN0                               (2) 
 
COUT1 = A0B1CIN1 + A1B0CIN1 + A1B1CIN0  
                 + A1B1CIN1                             (3) 
 
COUT0 = A0B0CIN0 + A0B0CIN1 + A0B1CIN0  
                + A1B0CIN0                               (4) 
 
     The respective factorized forms [24] of (1) to (4) 
are specified by (5) to (8).  
 
SUM1 = (A0B0 + A1B1) CIN1   
               + (A0B1 + A1B0) CIN0                  (5) 

SUM0 = (A0B0 + A1B1) CIN0  
               + (A0B1 + A1B0) CIN1              (6) 
 
COUT1 = (A0B1 + A1B0) CIN1 + A1B1     (7) 
 
COUT0 = (A0B1 + A1B0) CIN0 + A0B0     (8) 
 
     Equations (1) to (4) and (5) to (8) are in disjoint 
sum of products/sum of disjoint products form [25] 
[26]. A disjoint sum of products expression is 
formed by the logical disjunction (sum) of disjoint 
product terms, where any two product terms 
considered together are mutually disjoint or 
orthogonal [27], i.e. the logical conjunction of any 
two products in a disjoint sum of products equation 
yields null. Hence the degree of mutual 
orthogonality in relation to two disjoint product 
terms is at least equal to 1 [35] [49].    
     The proposed early output full adder shown in 
Fig 3 synthesizes (5) to (8), and is an example for a 
circuit with implicit logic redundancy [28]. In Fig 3, 
nodes n1 to n7 are isochronic forks, and net1, net2, 
net3, net4 and net5 represent the internal outputs. 
The internal outputs asum1 and asum0 are logically 
equivalent to the primary outputs SUM1 and SUM0 
respectively. The operation of the proposed early 
output full adder is described as follows by 
considering three possible carry scenarios viz. carry 
propagation, carry generation, and carry kill.     
 
3.1 Carry-propagate condition  
The carry-propagate condition is specified by either 
A0 = B1 = 1 or A1 = B0 = 1 during the valid data 
phase. For either of these input combinations in the 
valid data phase, the complex gate CG2 will become 
enabled and the internal output net2 will become 1. 
The OR gate which serves as an internal completion 
detector will be enabled and net3 will also become 
1. Assuming CIN1 to be 1, the complex gate CG4 
will be activated and the intermediate sum output 
asum0 will also become 1. The C-element, marked 
as CE2 will be subsequently activated after asum0 
and net3 become 1, leading to the production of 1 
on SUM0. With net2 and CIN1 becoming 1, the 
carry output COUT1 will also become 1, i.e. the 
carry is propagated from input to output. For any of 
the inputs combination assumed, both the sum and 
carry outputs are found to be dependent upon the 
receipt of all the primary inputs. In the successive 
RTZ phase, even with A0 and/or B1 or A1 and/or 
B0 assuming 0, both SUM0 and COUT1 will be 
reset (i.e. returns to 0) regardless of whether CIN1 
has returned to 0 or not. This signifies the early 
output nature of the proposed full adder.  
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3.2 Carry-generate condition  
The carry-generate condition is specified by the 
input combination A1 = B1 = 1 during the valid data 
phase. For this input combination, AND1 will 
become enabled and the internal output net4 will 
assume 1. Eventually, the complex gate CG5 will be 
enabled and COUT1 will be driven to 1 regardless 
of the receipt of a valid data on the carry input, i.e. 
the carry is said to be generated from the full adder. 
Since A1 and B1 are 1, the complex gate CG1 will 
be activated and net1 will assume 1. Subsequently, 
net3 will assume 1. Following this, and depending 
upon whether CIN0 or CIN1 is 1, SUM0 or SUM1 
will assume 1 respectively. Thus for carry 
generation in the valid data phase, the carry output 
is not dependent upon the carry input, but the sum 
output is dependent. In the successive RTZ phase, 
even with A1 and/or B1 becoming 0, net4 will 
assume 0 and COUT1 will also assume 0. Also, net1 
will become 0, followed by net3 becoming 0, 
resulting in SUM0 or SUM1 being reset regardless 
of the carry input returning to 0. This is reflective of 
the early reset nature of the proposed full adder.        
 
3.3 Carry-kill condition  
The carry-kill condition is specified by A0 = B0 = 1. 
For this input combination in the valid data phase, 
AND2 will be activated and net5 will assume 1. 
This will be followed by an output of 1 on COUT0, 
i.e. the carry output is said to be killed by the full 
adder when the input combination A0 = B0 = 1 
occurs since the carry is neither generated nor 
propagated from the input to output. Further, since 
A0 and B0 are 1, the complex gate CG1 will be 
activated resulting in net1 and net3 assuming 1. 
Given net1 = 1, and depending upon whether CIN0 
or CIN1 becomes 1, SUM0 or SUM1 will assume 1 
respectively. In the subsequent RTZ phase, even if 
A0 and/or B0 returns to 0, net5 will assume 0 and 
COUT0 will RTZ. Given A0 and/or B0 has returned 
to 0, net1 and net3 will assume 0, and eventually 
SUM0 or SUM1, whichever was 1 earlier will RTZ. 
Thus in the RTZ phase, both the sum and carry 
outputs could RTZ regardless of the RTZ of the 
carry input, which again demonstrates the early reset 
nature of the proposed full adder.  
 
     Having described the early output (early reset) 
nature of the proposed full adder with respect to 
carry propagation, carry generation, and carry kill, 
let us now consider why the need for imposing the 
relative-timing assumption arises when the proposed 
full adder is cascaded to form a RCA. We shall 
consider the 2-bit asynchronous RCA shown in Fig 
4 to aid with this discussion.  

 
 

Fig 4. Example application of (a) valid input data 
and (b) RTZ in the 2-bit relative-timed RCA 

constructed using the proposed full adder block 
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     In Fig 4, (A01, A00) and (B01, B00) represent 
the least significant augend and addend inputs, and 
(A11, A10) and (B11, B10) represent the most 
significant augend and addend inputs. The carry 
input for the least significant full adder is 
represented by (CIN01, CIN00), while the carry 
input for the most significant full adder is 
represented by (COUT01, COUT00), which is the 
carry output of the least significant full adder stage. 
The least and most significant dual-rail sum outputs 
are represented by (SUM01, SUM00) and (SUM11, 
SUM10) respectively. In Fig 4, the complex gates 
COG1 to COG6 and CEM1 and CME2 synthesize 
similar logic as that of CG1 to CG6 and CE1 and 
CE2 respectively. Likewise, the simple gates 
ADG1, ADG2 and ORG synthesize similar logic as 
that of AND1, AND2 and OR respectively.   
     Fig 4a and Fig 4b respectively depict an example 
application of valid input data and the subsequent 
RTZ of the 2-bit RCA constructed using the 
proposed full adder. The pink lines represent valid 
data (i.e. binary 1) and the green lines represent the 
RTZ (i.e. binary 0). In Fig 4a, corresponding to the 
valid input data applied, valid primary outputs are 
produced. In Fig 4b, as portrayed, even with just a 
partial RTZ of the primary inputs, all the primary 
outputs could RTZ. In Fig 4b, the late RTZ of the 
addend inputs B01 and B11 would not pose a 
problem since their RTZ would be acknowledged by 
the completion detector associated with the current 
stage register as shown in Fig 1. Notice here that the 
asynchronous logic block of Fig 1 is treated as the 
2-bit RCA shown in Fig 4. It is very important to 
note that during the valid data phase, the production 
of sum and carry outputs in the RCA would depend 
upon the actual input pattern applied, while during 
RTZ, the sum and carry outputs of all the full adder 
stages within the RCA tend to be reset in parallel 
due to the early reset nature of the proposed full 
adder constituting the RCA as shown in Fig 4.  
     The main issue that now demands attention is 
resolving the ambiguity associated with ensuring the 
RTZ of the internal carry signal COUT01 prior to 
the RTZ of the corresponding sum output viz. 
SUM11/SUM10. It is essential to presume that 
COUT01 returns to 0 before SUM11 returns to 0 in 
Fig 4 to overcome the problem of gate and wire 
orphans [29] – [31] so as to guarantee the robustness 
of the RCA. Orphans are basically unacknowledged 
signal transitions and if present could affect the 
robustness of an asynchronous circuit/system; for an 
understanding of gate and wire orphans and their 
consequences, the interested reader is directed to 
[29] – [31] for detailed explanations.  
 

     For an n-bit RCA constructed using the proposed 
early output full adder, the timing assumption that 
has to be imposed can be generalized as follows – 
the carry input of a (k + 1)th stage full adder in the n-
bit RCA, which is actually the carry output of the kth 
stage full adder, is assumed to have returned to 0 
before the sum output of the (k + 1)th stage full 
adder in the RCA returns to 0. This signifies a 
relative-timing assumption [32], and this timing 
assumption would be independent of the RCA size 
since the relative-timing assumption is applicable to 
maximum of only 2 full adder stages within the 
RCA. This is good news since the relative-timing 
assumption is restricted to just a small circuit area.   
     It is important to calculate the actual measure of 
relative-timing that should be assumed in the RCA 
with respect to the RTZ phase in order to guarantee 
the robustness of the relative-timed RCA, a sample 
of which is shown in Fig 4. To do this, we refer to 
the cell library information given in [22] and 
consider only the minimum sized gates in the library 
since only minimum sized gates were used in the 
simulations as well.  
     The maximum propagation delay involved in the 
direct RTZ of the sum output(s) equals the sum of 
propagation delays of 3 complex gates viz. 2 AO22 
gates and 1 2-input C-element, for example 
CG1/CG2 and CG3/CG4 and CE1/CE2 in Fig 4 – 
this equates to a propagation delay of 0.250ns. The 
maximum propagation delay encountered for the 
indirect RTZ of the sum output of any full adder 
stage following the RTZ of the carry output from 
the previous full adder stage equals 0.313ns. This 
results from the summation of propagation delays of 
2 AO22 gates, 1 AO21 gate and 1 2-input C-
element, for example CG2, CG5, COG4 and CEM2 
as can be seen in Fig 4. Thus considering the direct 
RTZ and the indirect RTZ of the sum output of any 
early output full adder within the relative-timed 
RCA, it is clear that there is a negative timing slack 
of 0.063ns, which actually represents the extent of 
the relative-timing assumption. The worst-case 
forward latency of the 32-bit relative-timed RCA 
constructed using the proposed full adder was 
estimated to be 2.99ns (mentioned in Section 4), and 
the expected reverse latency is 0.250ns. Compared 
to these, the required relative-timing assumption of 
0.063ns does not appear to be significant. This 
timing assumption may be reduced further through 
selective gate sizing [33] of the carry output logic of 
the full adder shown in Fig 3 and Fig 4.  
     As mentioned earlier, one of the principal 
advantages of the relative-timed RCA constructed 
using the proposed full adder is that the RTZ is very 
fast and involves a theoretically minimum constant 

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS P. Balasubramanian

E-ISSN: 2224-266X 96 Volume 15, 2016



reverse latency of just 1 full adder delay. The 
forward latency would be data-dependent though. A 
generalized magnitude-wise comparison of forward 
and reverse latencies and the cycle time of strong-
indication, weak-indication (basic, distributed and 
biased), early output, and relative-timed n-bit RCAs 
is given in Table 1 [34]. The cycle time is the 
summation of forward and reverse latencies and 
determines the throughput of the asynchronous 
system. In Table 1, m denotes the maximum carry 
propagation chain length (m ≤ n), i.e. the maximum 
number of full adder stages in the RCA through 
which the carry might propagate.   
 
Table 1. Forward latency, reverse latency, and cycle 
time attributes of n-bit asynchronous RCAs, with m 

specifying the carry chain length (m ≤ n) 
RCA  
type 

Forward
latency 

Reverse 
latency 

Cycle 
time 

Strong O(n) O(n) O(2n) 
Weak 
(Basic) 

O(m) O(m) O(2m) 

Weak 
(Distributed/ 
Biased) 

 
O(m) 

 
O(2) 

 
O(m+2)

Early output O(m) O(2) O(m+2)
Relative-timed O(m) O(1) O(m+1)

 
 

4 Simulation Results and Theoretical 
Cycle Time Estimates of Various 
Asynchronous RCAs  
Several 32-bit asynchronous RCAs corresponding to 
strong-indication, weak-indication, early output and 
relative-timing models were constructed in a semi-
custom design fashion using standard cells [22]. The 
structural integrity of the full adders and the RCAs 
was preserved during technology mapping which 
paves the way for a straightforward comparison of 
their design metrics post-physical synthesis. The 2-
input C-element was alone designed manually using 
the AO222 cell by incorporating feedback and was 
made available to realize the various asynchronous 
circuits. High fan-in C-element functionalities 
wherever likely were safely decomposed into 2-
input C-elements based on the safe asynchronous 
logic decomposition method presented in [35]. 
Notice that unsafe logic decompositions could result 
in gate orphans.   
     An asynchronous system stage comprises the 
RCA, the input registers, and the completion 
detector. Of these, the input registers and the 
completion detector part are identical, and only the 
RCAs differ in their physical composition. Hence 

the differences between the simulations results of 
different asynchronous systems comprising the 
different RCAs can be entirely attributed to the 
physical differences in the logical composition of 
the RCAs.  
     More than 1000 random input vectors were 
supplied identically to the RCAs at time intervals of 
20ns through test benches in order to capture their 
switching activities. The value change dump (.vcd) 
files generated through the functional simulations 
were used for average power estimation using 
Synopsys PrimeTime. Since the EDA tool mainly 
estimates critical path timing, the worst-case 
forward latency was alone estimated for a typical 
case PVT specification (1.05V, 25ºC). Appropriate 
wire loads i.e. parasitic were included whilst 
performing the simulations. As part of advanced 
timing analysis, a virtual clock was used just to 
constrain the input and output ports of the RCAs, 
and it did not contribute to any power dissipation.    
     Table 2 presents the simulation results viz. power 
dissipation, forward latency, and area occupancy of 
different asynchronous RCAs, each having size of 
32-bits. Table 3 lists the recurring logic elements in 
the critical path of different RCAs.      
 

Table 2. Average power dissipation, forward 
latency, and area occupancy of different 32-bit 
asynchronous RCAs estimated using a 32/28nm 

CMOS process; the corresponding full adder area is 
given within brackets in the last column 

RCA name and  
(Indication type) 

Power 
(µW) 

Latency 
(ns) 

Areas 
(µm2) 

Reference [36] 
(Strong) 

2190 14.61 2529 
(54.64) 

Reference [37] 
(Strong) 

2181 9.26 2504.60 
(53.88) 

Reference [38] 
(Strong) 

2172 9.04 2293.14 
(47.27) 

Reference [37] 
(Weak) 

2177 8.24 2423.27 
(51.34) 

Reference [39] 
(Weak) 

2192 9.66 2642.85 
(58.20) 

Reference [40] 
(Weak) 

2171 7.00 2016.63 
(38.63) 

Reference [41] 
(Weak) 

2174 4.43 2097.96 
(41.17) 

Reference [42] 
(Weak) 

2171 3.32 2049.16 
(39.65) 

Reference [19] 
(Early output) 

2161 3.10 1658.80 
(27.45) 

This work 
(Relative-timed) 

2168 2.99 1675.06 
(27.96) 
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Table 3. Recurring logic elements in the critical path 
of different 32-bit asynchronous RCAs 

corresponding to a 32/28nm CMOS process 
RCA name and  

(Indication type) 
Critical path  
logic elements 

Reference [36] (Strong) 2CE2, 2OR3 
Reference [37] (Strong) CE2, OR4 
Reference [38] (Strong) CE2, 2OR2 
Reference [37] (Weak) CE2, OR3 
Reference [39] (Weak) AND2, CE2, OR3 
Reference [40] (Weak) CE2, OR2 
Reference [41] (Weak) AO222 
Reference [42] (Weak) AO21 
Reference [19] (Early output) AO22 
This work (Relative-timed) AO21 

ORk – k-input OR gate; ANDk – k-input AND gate;  
CE2 – 2-input C-element; AO222, AO21 and AO22 are complex gates 

of the digital standard cell library [22] 
 

     From Table 2, it is evident that the average 
power dissipation of all the asynchronous RCAs is 
almost comparable – this is because the full adder 
logic of the RCAs satisfy the monotonic cover 
constraint [11] [12], which implies the activation of 
a unique signal path from a primary input to a 
primary output for each distinct input pattern 
applied. Among all the RCAs listed in Table 2, the 
relative-timed RCA incorporating the proposed full 
adder features the least data path latency, thanks to 
its optimized data path. Compared to the optimized 
strongly indicating RCA constructed using the 
strong-indication full adder of [38], the proposed 
relative-timed RCA achieves respective reductions 
in latency and area of 67% and 27%. In comparison 
with the latency optimized weak-indication RCA 
constructed using the biased weak-indication full 
adder of [42], the proposed relative-timed RCA 
features reduced latency by 10%. In Table 2, Folco 
et al.’s full adder [40] based RCA features the least 
area among weak-indication asynchronous RCAs. In 
comparison with this, the relative-timed RCA 
incorporating the proposed early output full adder 
occupies less area by 17%. From Table 2, it can be 
observed that the relative-timed RCA based on the 
proposed early output full adder seems to offer a 
good optimization of power, latency and area 
simultaneously – thanks to logic factorization and 
optimization [43] – [47] before physical synthesis.    
     We shall now discuss the approximate theoretical 
computation of cycle times of diverse asynchronous 
RCAs for different carry propagation lengths. A 32-
bit asynchronous ALU was implemented in [48] and 
it was found that addition comprises about 80% of 
the operations performed by the ALU. It has also 
been found that about 60% of the random inputs 

involve carry propagation to less than or equal to 4 
stages in the case of 32-bit addition, and almost 
100% of the random inputs entail carry propagation 
to about 8 stages or less. A majority of the address 
calculations performed by the ALU involve carry 
propagation of up to 16 stages, and about 45% of 
the data processing operations require carry-
propagation over almost the entire adder width. 
Given this, an approximate theoretical estimation of 
the cycle time for different 32-bit asynchronous 
RCAs by assuming carry propagation lengths of 4, 
8, 16, 24 and 28 full adder stages is done as a 
reflection of the typical operations in an ALU. The 
calculated cycle times are given in Table 4.  
     The cycle times are computed by averaging the 
forward latency values in Table 2 corresponding to 
the RCA size, and subsequently extrapolating the 
averaged values based on the generic cycle time 
magnitudes given in Table 1. As can be seen in 
Table 4, the relative-timed RCA incorporating the 
proposed full adder features the least latency for any 
number of carry propagation stages and on average. 
In comparison with the optimized strong-indication 
[38], weak-indication [42], and early output RCAs 
[19], the proposed relative-timed RCA enables 
corresponding mean reductions in cycle time by 
91%, 16% and 6% respectively.   
 

Table 4. Approximate theoretical cycle time 
estimates of different 32-bit asynchronous RCAs 

corresponding to different carry propagation lengths 
RCA 
type 

Cycle time based on number of 
carry propagation stages  

4 8 16 24 28 
Reference [36] 
(Strong) 

29.2 29.2 29.2 29.2 29.2 
Mean of cycle times = 29.2ns 

Reference [37] 
(Strong) 

18.5 18.5 18.5 18.5 18.5 
Mean of cycle times = 18.5ns 

Reference [38] 
(Strong) 

18.1 18.1 18.1 18.1 18.1 
Mean of cycle times = 18.1ns 

Reference [37] 
(Weak) 

2.1 4.1 8.2 12.4 14.4 
Mean of cycle times = 8.2ns 

Reference [39] 
(Weak) 

2.4 4.8 9.7 14.5 16.9 
Mean of cycle times = 9.7ns 

Reference [40] 
(Weak) 

1.8 3.5 7.0 10.5 12.3 
Mean of cycle times = 7.0ns 

Reference [41] 
(Weak) 

0.8 1.4 2.5 3.6 4.2 
Mean of cycle times = 2.5ns 

Reference [42] 
(Weak) 

0.6 1.0 1.9 2.7 3.1 
Mean of cycle times = 1.9ns 

Reference [19] 
(Early output) 

0.6 1.0 1.7 2.5 2.9 
Mean of cycle times = 1.7ns 

This work 
(Relative-timed) 

0.5 0.8 1.6 2.3 2.7 
Mean of cycle times = 1.6ns 
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5 Conclusions and Future Work   
This article has presented a new asynchronous early 
output full adder design, which when cascaded gives 
to a RCA that necessitates employing small relative-
timing assumptions to guarantee freedom from 
circuit orphans. The relative-timing assumptions are 
independent of the RCA size, and are applied on the 
internal carries to ensure robustness. The primary 
attributes of the proposed relative-timed RCA are: 
(i) the time taken to process valid input data is data-
dependent, and (ii) the time taken to process the 
spacer is a constant, and is roughly equal to 1 full 
adder delay, which is the least possible computation 
time for spacer.   
     A 32-bit relative-timed RCA constructed using 
the proposed early output full adder achieves 
respective reductions in forward latency by 67%, 
10% and 3.5% compared to the optimized strong-
indication, weak-indication, and early output 32-bit 
asynchronous RCAs existing in the literature. Based 
on a similar comparison, the proposed 32-bit 
relative-timed RCA achieves corresponding 
reductions in cycle time by 83%, 12.7% and 6.4%. 
In terms of area, the proposed 32-bit relative-timed 
RCA occupies 27% less Silicon than its optimized 
strong-indication counterpart and 17% less Silicon 
than its optimized weak-indication counterpart, and 
features more area occupancy by a meager 1% 
compared to the optimized early output 32-bit 
asynchronous RCA. All these simulation results 
correspond to a 32/28nm bulk CMOS process. 
     Moreover, the proposed 32-bit relative-timed 
RCA exhibits the least latency for any number of 
carry propagation stages and on average. In 
comparison with the optimized strong-indication, 
weak-indication, and early output asynchronous 
RCAs in the literature, the proposed relative-timed 
RCA enables corresponding mean reductions in 
cycle time by 91%, 16% and 6% respectively. Thus 
the relative-timed RCA based on the proposed early 
output full adder tends to achieve good optimization 
of power, throughput and area parameters 
simultaneously.  
     Scope for future work exists in terms of trying to 
synthesize efficient early output implementations of 
single-bit [50] and dual-bit full adder functionality 
[51] [52] corresponding to both homogeneous and 
heterogeneous delay-insensitive data encoding, 
which might lead to better optimized relative-timed 
RCAs, carry-select adders [53], and multi-operand 
adders [54], and exploring the design of relative-
timed carry lookahead adders [55] [56] [57] by 
relative-timing the carry lookahead generator in 
relation to the sum producing logic. All these 
provide interesting directions for further work.  
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