
An Asynchronous Early Output Full Adder and a Relative-Timed
Ripple Carry Adder

 P. BALASUBRAMANIAN

 School of Computer Engineering
Nanyang Technological University

50 Nanyang Avenue
SINGAPORE 639798

Email: balasubramanian@ntu.edu.sg

Abstract: - This article presents the design of a new asynchronous early output full adder which when cascaded
leads to a relative-timed ripple carry adder (RCA). The relative-timed RCA requires imposing a very small
relative-timing assumption to overcome the problem of gate orphans associated with internal carry propagation.
The relative-timing assumption is however independent of the RCA size. The primary benefits of the relative-
timed RCA are processing of valid data incurs data-dependent forward latency, while the processing of spacer
involves a very fast constant time reverse latency of just 1 full adder delay which represents the ultimate in the
design of an asynchronous RCA with the fastest reset. The secondary benefits of the relative-timed RCA are it
achieves good optimization of power and area metrics simultaneously. A 32-bit relative-timed RCA constructed
using the proposed early output full adder achieves respective reductions in forward latency by 67%, 10% and
3.5% compared to the optimized strong-indication, weak-indication, and early output 32-bit asynchronous
RCAs existing in the literature. Based on a similar comparison, the proposed 32-bit relative-timed RCA
achieves corresponding reductions in cycle time by 83%, 12.7% and 6.4%. In terms of area, the proposed 32-bit
relative-timed RCA occupies 27% less Silicon than its optimized strong-indication counterpart and 17% less
Silicon than its optimized weak-indication counterpart, and features increased area occupancy by a meager 1%
compared to the optimized early output 32-bit asynchronous RCA. The average power dissipation of all the
asynchronous 32-bit RCAs are found to be comparable since they all satisfy the monotonic cover constraint.
The simulation results obtained correspond to a 32/28nm CMOS process.

Key-Words: - Asynchronous design, Relative-timing, Indication, Ripple Carry Adder, CMOS, Standard cells

1 Introduction
The Semiconductor Industry Association’s
International Technology Roadmap for
Semiconductors (ITRS) [1] has identified design for
variability as one of the futuristic grand challenges
for design technology. The percentage of design
reuse in system-on-chip designs which was
estimated to be 46% in the 2009 ITRS edition is
expected to become 96% by the year 2024. Further,
the proportion of design blocks reuse with respect to

glue logic is expected to reach 60% by 2024.
Moreover, parameter uncertainty as a percentage
effect on sign-off delay is expected to increase to
32% by 2024. In this backdrop, a robust flavor of
asynchronous design which employs delay-
insensitive data codes for data representation and
processing, and the 4-phase return-to-zero (RTZ)
handshaking protocol for communication is forecast
to be a strong contender or an inevitable counterpart
to conventional synchronous design for

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS P. Balasubramanian

E-ISSN: 2224-266X 91 Volume 15, 2016

implementing digital circuits and systems in the
nanoelectronics regime. This is because robust
asynchronous designs1 are inherently modular (i.e.
permits design reuse) [2], are self-checking [3],
exhibit superior EMI compatibility [4], are noise-
tolerant [5], have the ability to cope with parametric
uncertainty, supply voltage, threshold voltage and
temperature variations [6] [7], consume power only
when and where active [8], and are able to guarantee
greater security and robustness against hostile
attacks compared to synchronous designs in the case
of sensitive industrial applications [9] [10]. Taking
cognizance of these facts, the ITRS design report
has projected a growing requirement for
asynchronous signaling in the nanoelectronics era
and also emphasizes on the continuous development
of asynchronous circuit and system design tools.
 This article presents the design of a new
asynchronous early output full adder, which when
cascaded leads to an asynchronous RCA that
necessitates employing a very small relative-timing
assumption to overcome the problem of gate
orphan(s) resulting from internal carry propagation.
An asynchronous RCA incorporating the relative-
timing assumption(s) is called relative-timed RCA.
 In the rest of this article, Section 2 provides
background information relating to delay-insensitive
data encoding, 4-phase RTZ handshaking, and
indication (i.e. acknowledgment) in the context of
an asynchronous system. The proposed early output
asynchronous full adder is presented in Section 3
and its operation is discussed for three possible
scenarios viz. carry propagation, carry generation
and carry kill. The necessity for imposing relative-
timing assumption(s) in an RCA formed using the
proposed early output full adder is described in
Section 3, and the factual relative-timing
assumption required is also estimated. Section 4
presents the simulation results obtained for various
32-bit asynchronous strong-indication, weak-
indication, early output, and relative-timed RCAs.
The simulation results correspond to power, forward
latency, and area. Since the estimation of cycle time
of asynchronous logic designs at the gate level is
infeasible using a commercial synchronous tool, a
theoretical calculation of cycle time of the various
32-bit asynchronous RCAs is presented by assuming
different carry propagation lengths within the RCAs

1 Asynchronous design, in this paper, generally refers to a robust flavor
which employs delay-insensitive data codes and incorporates 4-phase
(return-to-zero) handshaking unless otherwise stated. The term ‘robust’
may be optionally used as a suffix to emphasize the robustness attribute
of the asynchronous design described.

and these are also given in Section 4. Finally the
conclusions are stated in Section 5.

2 Background
An asynchronous logic block comprising an
asynchronous digital system represents the
combinational logic equivalent of a synchronous
digital system [11] [12]. Asynchronous logic blocks
constructed using delay-insensitive data codes and
adhering to the 4-phase RTZ handshaking protocol
are robust.
 The dual-rail code is the simplest member of the
generic family of delay-insensitive data codes [13],
based on which a data wire X is represented using
dual data wires X1 and X0 as shown in Fig 1. X = 1
is represented by X1 = 1 and X0 = 0, and X = 0 is
represented by X1 = 0 and X0 = 1. These two
conditions represent ‘valid data’, and the condition
of both X1 and X0 assuming 0 is referred to as the
‘spacer’. The 4-phase RTZ handshaking procedure
requires that the application of inputs from the
external environment follows the defined sequence:
valid data-spacer-valid data-spacer, and so forth.
 The representative block diagram of a typical
asynchronous system stage is shown in Fig 1 that is
accompanied by the sender-receiver analogy. The
valid data and spacer processing operations of an
asynchronous system stage are explained in [11]
[12], and the avid reader is referred to the same. In
Fig 1, the junction dots shown enclosed within the
blue ovals in dotted lines represent isochronic fork
junctions. Isochronicity constitutes the weakest
compromise to delay-insensitivity [14], and an
isochronic fork junction implies that all the nets
forking out from the junction tend to experience
similar signal transitions occurring simultaneously.

Fig 1. Block diagram of an asynchronous system
stage correlated with the sender-receiver analogy

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS P. Balasubramanian

E-ISSN: 2224-266X 92 Volume 15, 2016

 Referring to Fig 1, the 4-phase RTZ protocol is
explained as follows. The dual-rail data bus that
feeds the current stage register (sender) is initially in
the spacer state, and the common acknowledge input
(ackin) for the current stage register is binary 1,
since the common acknowledge output (ackout)
provided by the next stage register (receiver) is
binary 0. The current stage register now transmits a
code word, i.e. valid data. This results in low to high
transitions on anyone of the corresponding rails of
all the dual-rail bus wires which feed the
asynchronous logic block. After the next stage
register receives a code word subsequent to
completion of data processing in the asynchronous
logic block, it drives ackout to 1, and ackin assumes
0. The current stage register waits for ackin to
become 0 and then resets the data bus, i.e. the data
bus feeding the asynchronous logic block is driven
to the spacer state. After an unbounded but finite
and positive amount of time taken for the resetting
of the asynchronous logic block and the passage of
spacer to the following register stage, the next stage
register drives ackout (ackin) to 0 (1). With this, a
single data transaction is said to be complete, and
the asynchronous system is ready to commence the
next data transaction.
 Asynchronous logic blocks are classified as
strongly indicating [15] [16] [49], weakly indicating
[15] [17] [49], and early output type [18] [19].
Indication means providing acknowledgment for the
receipt of primary inputs through the primary
outputs whilst involving the intermediate outputs.
With respect to the asynchronous system stage
shown in Fig 1, the indication mechanism may be
local or global [20]; local – if the asynchronous
logic block within the asynchronous system stage by
itself indicates the receipt of all the primary inputs,
and global – if the asynchronous system stage on the
whole indicates the receipt of all the primary inputs
by the asynchronous logic block contained within it.
It has been recently shown in [21] that local weak-
indication is indeed preferable compared to global
weak-indication for asynchronous systems from a
power-cycle time-area perspective.
 The input-output timing relationship of strong-
indication, weak-indication, and early output type
asynchronous logic blocks is illustrated by the
representative timing diagram shown as Fig 2. A
strong-indication asynchronous logic block starts to
produce the requisite primary outputs only after
receiving all the primary inputs whether they are
valid data or spacer. A weak-indication
asynchronous logic block starts to produce some
primary outputs after receiving a subset of the
primary inputs. However, the production of at least

one primary output is withheld till all the primary
inputs are received. The early output asynchronous
logic block is in fact more relaxed compared to the
strong and weak-indication asynchronous logic
blocks in that it could produce all the primary
outputs after receiving just a subset of the primary
inputs. The early output asynchronous logic block is
further subdivided into 2 types as early set and early
reset. The early set type asynchronous logic block is
capable of producing all the valid primary outputs
after receiving just a subset of the valid primary
inputs. On the other hand, the early reset type
asynchronous logic block is capable of producing all
the spacer primary outputs after receiving just a
subset of the spacer primary inputs. Hence the early
output asynchronous logic block would be
categorized as either early set or early reset type,
and their respective behaviors are portrayed by the
green and pink ovals shown in dotted lines in Fig 2.

Inputs
arrival

All

None

All

None

Outputs
productionStrong-indication

All

None

Outputs
production

Weak-
indication

All

None

Outputs
productionEarly output

Early set Early reset

Fig 2. Input-output timing relationship of strong-
indication, weak-indication, and early output

asynchronous logic blocks

3 Proposed Early Output Full Adder
and Relative-Timed RCA
The proposed asynchronous early output full adder
corresponding to early reset type is shown in Fig 3,
which is designed using 11 logic gates. Of these,
there are 3 simple gates marked as AND1, AND2
and OR, and 8 complex gates referred by CG1 to
CG6 and CE1 and CE2 in Fig 3. Complex gates
CG1 to CG5 are referred to as AO22 gates in the
digital cell library [22]. The AO22 gate with inputs
A, B, C, D and output Y implements the logic

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS P. Balasubramanian

E-ISSN: 2224-266X 93 Volume 15, 2016

function Y = AB + CD. The complex gate CG6 in
Fig 3 is referred to as the AO21 gate in the standard
cell library [22] and implements the logic function Z
= PQ + R, where P, Q, R represent the inputs and Z
represents the output. Gates marked CE1 and CE2
represent 2-input C-elements, which are realized
using the AO222 gate with feedback [12]. The
Muller C-element, introduced in [23], is not only a
logic gate but also a state holding register. It outputs
1 only if all its inputs are 1, and likewise outputs 0
only if all its inputs are 0. If its inputs are different,
the C-element would maintain its existing state.

Fig 3. Proposed early output full adder

 In Fig 3, (A1, A0), (B1, B0) and (CIN1, CIN0)
represent the dual-rail augend, addend and carry
inputs, and (SUM1, SUM0) and (COUT1, COUT0)
represent the dual-rail sum and carry outputs
respectively. The fundamental equations governing
the dual-rail sum and carry outputs of the
asynchronous full adder are given by (1) to (4).

SUM1 = A0B0CIN1 + A0B1CIN0 + A1B0CIN0
 + A1B1CIN1 (1)

SUM0 = A0B0CIN0 + A0B1CIN1 + A1B0CIN1
 + A1B1CIN0 (2)

COUT1 = A0B1CIN1 + A1B0CIN1 + A1B1CIN0
 + A1B1CIN1 (3)

COUT0 = A0B0CIN0 + A0B0CIN1 + A0B1CIN0
 + A1B0CIN0 (4)

 The respective factorized forms [24] of (1) to (4)
are specified by (5) to (8).

SUM1 = (A0B0 + A1B1) CIN1
 + (A0B1 + A1B0) CIN0 (5)

SUM0 = (A0B0 + A1B1) CIN0
 + (A0B1 + A1B0) CIN1 (6)

COUT1 = (A0B1 + A1B0) CIN1 + A1B1 (7)

COUT0 = (A0B1 + A1B0) CIN0 + A0B0 (8)

 Equations (1) to (4) and (5) to (8) are in disjoint
sum of products/sum of disjoint products form [25]
[26]. A disjoint sum of products expression is
formed by the logical disjunction (sum) of disjoint
product terms, where any two product terms
considered together are mutually disjoint or
orthogonal [27], i.e. the logical conjunction of any
two products in a disjoint sum of products equation
yields null. Hence the degree of mutual
orthogonality in relation to two disjoint product
terms is at least equal to 1 [35] [49].
 The proposed early output full adder shown in
Fig 3 synthesizes (5) to (8), and is an example for a
circuit with implicit logic redundancy [28]. In Fig 3,
nodes n1 to n7 are isochronic forks, and net1, net2,
net3, net4 and net5 represent the internal outputs.
The internal outputs asum1 and asum0 are logically
equivalent to the primary outputs SUM1 and SUM0
respectively. The operation of the proposed early
output full adder is described as follows by
considering three possible carry scenarios viz. carry
propagation, carry generation, and carry kill.

3.1 Carry-propagate condition
The carry-propagate condition is specified by either
A0 = B1 = 1 or A1 = B0 = 1 during the valid data
phase. For either of these input combinations in the
valid data phase, the complex gate CG2 will become
enabled and the internal output net2 will become 1.
The OR gate which serves as an internal completion
detector will be enabled and net3 will also become
1. Assuming CIN1 to be 1, the complex gate CG4
will be activated and the intermediate sum output
asum0 will also become 1. The C-element, marked
as CE2 will be subsequently activated after asum0
and net3 become 1, leading to the production of 1
on SUM0. With net2 and CIN1 becoming 1, the
carry output COUT1 will also become 1, i.e. the
carry is propagated from input to output. For any of
the inputs combination assumed, both the sum and
carry outputs are found to be dependent upon the
receipt of all the primary inputs. In the successive
RTZ phase, even with A0 and/or B1 or A1 and/or
B0 assuming 0, both SUM0 and COUT1 will be
reset (i.e. returns to 0) regardless of whether CIN1
has returned to 0 or not. This signifies the early
output nature of the proposed full adder.

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS P. Balasubramanian

E-ISSN: 2224-266X 94 Volume 15, 2016

3.2 Carry-generate condition
The carry-generate condition is specified by the
input combination A1 = B1 = 1 during the valid data
phase. For this input combination, AND1 will
become enabled and the internal output net4 will
assume 1. Eventually, the complex gate CG5 will be
enabled and COUT1 will be driven to 1 regardless
of the receipt of a valid data on the carry input, i.e.
the carry is said to be generated from the full adder.
Since A1 and B1 are 1, the complex gate CG1 will
be activated and net1 will assume 1. Subsequently,
net3 will assume 1. Following this, and depending
upon whether CIN0 or CIN1 is 1, SUM0 or SUM1
will assume 1 respectively. Thus for carry
generation in the valid data phase, the carry output
is not dependent upon the carry input, but the sum
output is dependent. In the successive RTZ phase,
even with A1 and/or B1 becoming 0, net4 will
assume 0 and COUT1 will also assume 0. Also, net1
will become 0, followed by net3 becoming 0,
resulting in SUM0 or SUM1 being reset regardless
of the carry input returning to 0. This is reflective of
the early reset nature of the proposed full adder.

3.3 Carry-kill condition
The carry-kill condition is specified by A0 = B0 = 1.
For this input combination in the valid data phase,
AND2 will be activated and net5 will assume 1.
This will be followed by an output of 1 on COUT0,
i.e. the carry output is said to be killed by the full
adder when the input combination A0 = B0 = 1
occurs since the carry is neither generated nor
propagated from the input to output. Further, since
A0 and B0 are 1, the complex gate CG1 will be
activated resulting in net1 and net3 assuming 1.
Given net1 = 1, and depending upon whether CIN0
or CIN1 becomes 1, SUM0 or SUM1 will assume 1
respectively. In the subsequent RTZ phase, even if
A0 and/or B0 returns to 0, net5 will assume 0 and
COUT0 will RTZ. Given A0 and/or B0 has returned
to 0, net1 and net3 will assume 0, and eventually
SUM0 or SUM1, whichever was 1 earlier will RTZ.
Thus in the RTZ phase, both the sum and carry
outputs could RTZ regardless of the RTZ of the
carry input, which again demonstrates the early reset
nature of the proposed full adder.

 Having described the early output (early reset)
nature of the proposed full adder with respect to
carry propagation, carry generation, and carry kill,
let us now consider why the need for imposing the
relative-timing assumption arises when the proposed
full adder is cascaded to form a RCA. We shall
consider the 2-bit asynchronous RCA shown in Fig
4 to aid with this discussion.

Fig 4. Example application of (a) valid input data
and (b) RTZ in the 2-bit relative-timed RCA

constructed using the proposed full adder block

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS P. Balasubramanian

E-ISSN: 2224-266X 95 Volume 15, 2016

 In Fig 4, (A01, A00) and (B01, B00) represent
the least significant augend and addend inputs, and
(A11, A10) and (B11, B10) represent the most
significant augend and addend inputs. The carry
input for the least significant full adder is
represented by (CIN01, CIN00), while the carry
input for the most significant full adder is
represented by (COUT01, COUT00), which is the
carry output of the least significant full adder stage.
The least and most significant dual-rail sum outputs
are represented by (SUM01, SUM00) and (SUM11,
SUM10) respectively. In Fig 4, the complex gates
COG1 to COG6 and CEM1 and CME2 synthesize
similar logic as that of CG1 to CG6 and CE1 and
CE2 respectively. Likewise, the simple gates
ADG1, ADG2 and ORG synthesize similar logic as
that of AND1, AND2 and OR respectively.
 Fig 4a and Fig 4b respectively depict an example
application of valid input data and the subsequent
RTZ of the 2-bit RCA constructed using the
proposed full adder. The pink lines represent valid
data (i.e. binary 1) and the green lines represent the
RTZ (i.e. binary 0). In Fig 4a, corresponding to the
valid input data applied, valid primary outputs are
produced. In Fig 4b, as portrayed, even with just a
partial RTZ of the primary inputs, all the primary
outputs could RTZ. In Fig 4b, the late RTZ of the
addend inputs B01 and B11 would not pose a
problem since their RTZ would be acknowledged by
the completion detector associated with the current
stage register as shown in Fig 1. Notice here that the
asynchronous logic block of Fig 1 is treated as the
2-bit RCA shown in Fig 4. It is very important to
note that during the valid data phase, the production
of sum and carry outputs in the RCA would depend
upon the actual input pattern applied, while during
RTZ, the sum and carry outputs of all the full adder
stages within the RCA tend to be reset in parallel
due to the early reset nature of the proposed full
adder constituting the RCA as shown in Fig 4.
 The main issue that now demands attention is
resolving the ambiguity associated with ensuring the
RTZ of the internal carry signal COUT01 prior to
the RTZ of the corresponding sum output viz.
SUM11/SUM10. It is essential to presume that
COUT01 returns to 0 before SUM11 returns to 0 in
Fig 4 to overcome the problem of gate and wire
orphans [29] – [31] so as to guarantee the robustness
of the RCA. Orphans are basically unacknowledged
signal transitions and if present could affect the
robustness of an asynchronous circuit/system; for an
understanding of gate and wire orphans and their
consequences, the interested reader is directed to
[29] – [31] for detailed explanations.

 For an n-bit RCA constructed using the proposed
early output full adder, the timing assumption that
has to be imposed can be generalized as follows –
the carry input of a (k + 1)th stage full adder in the n-
bit RCA, which is actually the carry output of the kth
stage full adder, is assumed to have returned to 0
before the sum output of the (k + 1)th stage full
adder in the RCA returns to 0. This signifies a
relative-timing assumption [32], and this timing
assumption would be independent of the RCA size
since the relative-timing assumption is applicable to
maximum of only 2 full adder stages within the
RCA. This is good news since the relative-timing
assumption is restricted to just a small circuit area.
 It is important to calculate the actual measure of
relative-timing that should be assumed in the RCA
with respect to the RTZ phase in order to guarantee
the robustness of the relative-timed RCA, a sample
of which is shown in Fig 4. To do this, we refer to
the cell library information given in [22] and
consider only the minimum sized gates in the library
since only minimum sized gates were used in the
simulations as well.
 The maximum propagation delay involved in the
direct RTZ of the sum output(s) equals the sum of
propagation delays of 3 complex gates viz. 2 AO22
gates and 1 2-input C-element, for example
CG1/CG2 and CG3/CG4 and CE1/CE2 in Fig 4 –
this equates to a propagation delay of 0.250ns. The
maximum propagation delay encountered for the
indirect RTZ of the sum output of any full adder
stage following the RTZ of the carry output from
the previous full adder stage equals 0.313ns. This
results from the summation of propagation delays of
2 AO22 gates, 1 AO21 gate and 1 2-input C-
element, for example CG2, CG5, COG4 and CEM2
as can be seen in Fig 4. Thus considering the direct
RTZ and the indirect RTZ of the sum output of any
early output full adder within the relative-timed
RCA, it is clear that there is a negative timing slack
of 0.063ns, which actually represents the extent of
the relative-timing assumption. The worst-case
forward latency of the 32-bit relative-timed RCA
constructed using the proposed full adder was
estimated to be 2.99ns (mentioned in Section 4), and
the expected reverse latency is 0.250ns. Compared
to these, the required relative-timing assumption of
0.063ns does not appear to be significant. This
timing assumption may be reduced further through
selective gate sizing [33] of the carry output logic of
the full adder shown in Fig 3 and Fig 4.
 As mentioned earlier, one of the principal
advantages of the relative-timed RCA constructed
using the proposed full adder is that the RTZ is very
fast and involves a theoretically minimum constant

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS P. Balasubramanian

E-ISSN: 2224-266X 96 Volume 15, 2016

reverse latency of just 1 full adder delay. The
forward latency would be data-dependent though. A
generalized magnitude-wise comparison of forward
and reverse latencies and the cycle time of strong-
indication, weak-indication (basic, distributed and
biased), early output, and relative-timed n-bit RCAs
is given in Table 1 [34]. The cycle time is the
summation of forward and reverse latencies and
determines the throughput of the asynchronous
system. In Table 1, m denotes the maximum carry
propagation chain length (m ≤ n), i.e. the maximum
number of full adder stages in the RCA through
which the carry might propagate.

Table 1. Forward latency, reverse latency, and cycle
time attributes of n-bit asynchronous RCAs, with m

specifying the carry chain length (m ≤ n)
RCA
type

Forward
latency

Reverse
latency

Cycle
time

Strong O(n) O(n) O(2n)
Weak
(Basic)

O(m) O(m) O(2m)

Weak
(Distributed/
Biased)

O(m)

O(2)

O(m+2)

Early output O(m) O(2) O(m+2)
Relative-timed O(m) O(1) O(m+1)

4 Simulation Results and Theoretical
Cycle Time Estimates of Various
Asynchronous RCAs
Several 32-bit asynchronous RCAs corresponding to
strong-indication, weak-indication, early output and
relative-timing models were constructed in a semi-
custom design fashion using standard cells [22]. The
structural integrity of the full adders and the RCAs
was preserved during technology mapping which
paves the way for a straightforward comparison of
their design metrics post-physical synthesis. The 2-
input C-element was alone designed manually using
the AO222 cell by incorporating feedback and was
made available to realize the various asynchronous
circuits. High fan-in C-element functionalities
wherever likely were safely decomposed into 2-
input C-elements based on the safe asynchronous
logic decomposition method presented in [35].
Notice that unsafe logic decompositions could result
in gate orphans.
 An asynchronous system stage comprises the
RCA, the input registers, and the completion
detector. Of these, the input registers and the
completion detector part are identical, and only the
RCAs differ in their physical composition. Hence

the differences between the simulations results of
different asynchronous systems comprising the
different RCAs can be entirely attributed to the
physical differences in the logical composition of
the RCAs.
 More than 1000 random input vectors were
supplied identically to the RCAs at time intervals of
20ns through test benches in order to capture their
switching activities. The value change dump (.vcd)
files generated through the functional simulations
were used for average power estimation using
Synopsys PrimeTime. Since the EDA tool mainly
estimates critical path timing, the worst-case
forward latency was alone estimated for a typical
case PVT specification (1.05V, 25ºC). Appropriate
wire loads i.e. parasitic were included whilst
performing the simulations. As part of advanced
timing analysis, a virtual clock was used just to
constrain the input and output ports of the RCAs,
and it did not contribute to any power dissipation.
 Table 2 presents the simulation results viz. power
dissipation, forward latency, and area occupancy of
different asynchronous RCAs, each having size of
32-bits. Table 3 lists the recurring logic elements in
the critical path of different RCAs.

Table 2. Average power dissipation, forward
latency, and area occupancy of different 32-bit
asynchronous RCAs estimated using a 32/28nm

CMOS process; the corresponding full adder area is
given within brackets in the last column

RCA name and
(Indication type)

Power
(µW)

Latency
(ns)

Areas
(µm2)

Reference [36]
(Strong)

2190 14.61 2529
(54.64)

Reference [37]
(Strong)

2181 9.26 2504.60
(53.88)

Reference [38]
(Strong)

2172 9.04 2293.14
(47.27)

Reference [37]
(Weak)

2177 8.24 2423.27
(51.34)

Reference [39]
(Weak)

2192 9.66 2642.85
(58.20)

Reference [40]
(Weak)

2171 7.00 2016.63
(38.63)

Reference [41]
(Weak)

2174 4.43 2097.96
(41.17)

Reference [42]
(Weak)

2171 3.32 2049.16
(39.65)

Reference [19]
(Early output)

2161 3.10 1658.80
(27.45)

This work
(Relative-timed)

2168 2.99 1675.06
(27.96)

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS P. Balasubramanian

E-ISSN: 2224-266X 97 Volume 15, 2016

Table 3. Recurring logic elements in the critical path
of different 32-bit asynchronous RCAs

corresponding to a 32/28nm CMOS process
RCA name and

(Indication type)
Critical path
logic elements

Reference [36] (Strong) 2CE2, 2OR3
Reference [37] (Strong) CE2, OR4
Reference [38] (Strong) CE2, 2OR2
Reference [37] (Weak) CE2, OR3
Reference [39] (Weak) AND2, CE2, OR3
Reference [40] (Weak) CE2, OR2
Reference [41] (Weak) AO222
Reference [42] (Weak) AO21
Reference [19] (Early output) AO22
This work (Relative-timed) AO21

ORk – k-input OR gate; ANDk – k-input AND gate;
CE2 – 2-input C-element; AO222, AO21 and AO22 are complex gates

of the digital standard cell library [22]

 From Table 2, it is evident that the average
power dissipation of all the asynchronous RCAs is
almost comparable – this is because the full adder
logic of the RCAs satisfy the monotonic cover
constraint [11] [12], which implies the activation of
a unique signal path from a primary input to a
primary output for each distinct input pattern
applied. Among all the RCAs listed in Table 2, the
relative-timed RCA incorporating the proposed full
adder features the least data path latency, thanks to
its optimized data path. Compared to the optimized
strongly indicating RCA constructed using the
strong-indication full adder of [38], the proposed
relative-timed RCA achieves respective reductions
in latency and area of 67% and 27%. In comparison
with the latency optimized weak-indication RCA
constructed using the biased weak-indication full
adder of [42], the proposed relative-timed RCA
features reduced latency by 10%. In Table 2, Folco
et al.’s full adder [40] based RCA features the least
area among weak-indication asynchronous RCAs. In
comparison with this, the relative-timed RCA
incorporating the proposed early output full adder
occupies less area by 17%. From Table 2, it can be
observed that the relative-timed RCA based on the
proposed early output full adder seems to offer a
good optimization of power, latency and area
simultaneously – thanks to logic factorization and
optimization [43] – [47] before physical synthesis.
 We shall now discuss the approximate theoretical
computation of cycle times of diverse asynchronous
RCAs for different carry propagation lengths. A 32-
bit asynchronous ALU was implemented in [48] and
it was found that addition comprises about 80% of
the operations performed by the ALU. It has also
been found that about 60% of the random inputs

involve carry propagation to less than or equal to 4
stages in the case of 32-bit addition, and almost
100% of the random inputs entail carry propagation
to about 8 stages or less. A majority of the address
calculations performed by the ALU involve carry
propagation of up to 16 stages, and about 45% of
the data processing operations require carry-
propagation over almost the entire adder width.
Given this, an approximate theoretical estimation of
the cycle time for different 32-bit asynchronous
RCAs by assuming carry propagation lengths of 4,
8, 16, 24 and 28 full adder stages is done as a
reflection of the typical operations in an ALU. The
calculated cycle times are given in Table 4.
 The cycle times are computed by averaging the
forward latency values in Table 2 corresponding to
the RCA size, and subsequently extrapolating the
averaged values based on the generic cycle time
magnitudes given in Table 1. As can be seen in
Table 4, the relative-timed RCA incorporating the
proposed full adder features the least latency for any
number of carry propagation stages and on average.
In comparison with the optimized strong-indication
[38], weak-indication [42], and early output RCAs
[19], the proposed relative-timed RCA enables
corresponding mean reductions in cycle time by
91%, 16% and 6% respectively.

Table 4. Approximate theoretical cycle time
estimates of different 32-bit asynchronous RCAs

corresponding to different carry propagation lengths
RCA
type

Cycle time based on number of
carry propagation stages

4 8 16 24 28
Reference [36]
(Strong)

29.2 29.2 29.2 29.2 29.2
Mean of cycle times = 29.2ns

Reference [37]
(Strong)

18.5 18.5 18.5 18.5 18.5
Mean of cycle times = 18.5ns

Reference [38]
(Strong)

18.1 18.1 18.1 18.1 18.1
Mean of cycle times = 18.1ns

Reference [37]
(Weak)

2.1 4.1 8.2 12.4 14.4
Mean of cycle times = 8.2ns

Reference [39]
(Weak)

2.4 4.8 9.7 14.5 16.9
Mean of cycle times = 9.7ns

Reference [40]
(Weak)

1.8 3.5 7.0 10.5 12.3
Mean of cycle times = 7.0ns

Reference [41]
(Weak)

0.8 1.4 2.5 3.6 4.2
Mean of cycle times = 2.5ns

Reference [42]
(Weak)

0.6 1.0 1.9 2.7 3.1
Mean of cycle times = 1.9ns

Reference [19]
(Early output)

0.6 1.0 1.7 2.5 2.9
Mean of cycle times = 1.7ns

This work
(Relative-timed)

0.5 0.8 1.6 2.3 2.7
Mean of cycle times = 1.6ns

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS P. Balasubramanian

E-ISSN: 2224-266X 98 Volume 15, 2016

5 Conclusions and Future Work
This article has presented a new asynchronous early
output full adder design, which when cascaded gives
to a RCA that necessitates employing small relative-
timing assumptions to guarantee freedom from
circuit orphans. The relative-timing assumptions are
independent of the RCA size, and are applied on the
internal carries to ensure robustness. The primary
attributes of the proposed relative-timed RCA are:
(i) the time taken to process valid input data is data-
dependent, and (ii) the time taken to process the
spacer is a constant, and is roughly equal to 1 full
adder delay, which is the least possible computation
time for spacer.
 A 32-bit relative-timed RCA constructed using
the proposed early output full adder achieves
respective reductions in forward latency by 67%,
10% and 3.5% compared to the optimized strong-
indication, weak-indication, and early output 32-bit
asynchronous RCAs existing in the literature. Based
on a similar comparison, the proposed 32-bit
relative-timed RCA achieves corresponding
reductions in cycle time by 83%, 12.7% and 6.4%.
In terms of area, the proposed 32-bit relative-timed
RCA occupies 27% less Silicon than its optimized
strong-indication counterpart and 17% less Silicon
than its optimized weak-indication counterpart, and
features more area occupancy by a meager 1%
compared to the optimized early output 32-bit
asynchronous RCA. All these simulation results
correspond to a 32/28nm bulk CMOS process.
 Moreover, the proposed 32-bit relative-timed
RCA exhibits the least latency for any number of
carry propagation stages and on average. In
comparison with the optimized strong-indication,
weak-indication, and early output asynchronous
RCAs in the literature, the proposed relative-timed
RCA enables corresponding mean reductions in
cycle time by 91%, 16% and 6% respectively. Thus
the relative-timed RCA based on the proposed early
output full adder tends to achieve good optimization
of power, throughput and area parameters
simultaneously.
 Scope for future work exists in terms of trying to
synthesize efficient early output implementations of
single-bit [50] and dual-bit full adder functionality
[51] [52] corresponding to both homogeneous and
heterogeneous delay-insensitive data encoding,
which might lead to better optimized relative-timed
RCAs, carry-select adders [53], and multi-operand
adders [54], and exploring the design of relative-
timed carry lookahead adders [55] [56] [57] by
relative-timing the carry lookahead generator in
relation to the sum producing logic. All these
provide interesting directions for further work.

References:
[1] Available: http://www.itrs.net
[2] C.H. van Kees Berkel, M.B. Josephs, S.M.

Nowick, “Scanning the technology:
applications of asynchronous circuits,”
Proceedings of the IEEE, vo. 87, no. 2, pp.
223-233, February 1999.

[3] I. David, R. Ginosar, M. Yoeli, “Self-timed is
self-checking,” Journal of Electronic Testing:
Theory and Applications, vol. 6, no. 2, pp. 219-
228, April 1995.

[4] G.F. Bouesse, G. Sicard, A. Baixas, M.
Renaudin, “Quasi delay insensitive
asynchronous circuits for low EMI,” Proc. 4th
International Workshop on Electromagnetic
Compatibility of Integrated Circuits, pp. 27-31,
2004.

[5] N.C. Paver, P. Day, C. Farnsworth, D.L.
Jackson, W.A. Lien, J. Liu, “A low-power, low
noise, configurable self-timed DSP,” Proc. 4th
International Symposium on Advanced
Research in Asynchronous Circuits and
Systems, pp. 32-42, 1998.

[6] K.J. Kulikowski, V. Venkataraman, Z. Wang,
A. Taubin, M. Karpovsky, “Asynchronous
balanced gates tolerant to interconnect
variability,” Proc. IEEE International
Symposium on Circuits and Systems, pp. 3190-
3193, 2008.

[7] I.J. Chang, S.P. Park, K. Roy, “Exploring
asynchronous design techniques for process-
tolerant and energy-efficient subthreshold
operation,” IEEE Journal of Solid-State
Circuits, vol. 45, no. 2, pp. 401-410, February
2010.

[8] O.C. Akgun, J. Rodrigues, J. Sparsø,
“Minimum-energy sub-threshold self-timed
circuits: design methodology and a case study,”
Proc. 16th IEEE International Symposium on
Asynchronous Circuits and Systems, pp. 41-51,
2010.

[9] Z.C. Yu, S.B. Furber, L.A. Plana, “An
investigation into the security of self-timed
circuits,” Proc. 9th International Symposium on
Asynchronous Circuits and Systems, pp. 206-
215, 2003.

[10] D. Sokolov, J. Murphy, A. Bystrov, A.
Yakovlev, “Design and analysis of dual-rail
circuits for security applications,” IEEE
Transactions on Computers, vol. 54, no. 4, pp.
449-460, April 2005.

[11] J. Sparsø, S. Furber, Principles of
Asynchronous Circuit Design: A Systems
Perspective, Kluwer Academic Publishers,
Boston, MA, USA, 2001.

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS P. Balasubramanian

E-ISSN: 2224-266X 99 Volume 15, 2016

[12] P Balasubramanian, Self-Timed Logic and the
Design of Self-Timed Adders, PhD thesis,
School of Computer Science, The University of
Manchester, 2010.

[13] T. Verhoeff, “Delay-insensitive codes – an
overview,” Distributed Computing, vol. 3, no.
1, pp. 1-8, March 1988.

[14] A.J. Martin, “The limitation to delay-
insensitivity in asynchronous circuits,” Proc.
6th MIT Conference on Advanced Research in
VLSI, pp. 263-278, 1990.

[15] C.L. Seitz, “System Timing,” in Introduction to
VLSI Systems, C. Mead and L. Conway
(Editors), pp. 218-262, Addison-Wesley,
Reading, Massachusetts, USA, 1980.

[16] P. Balasubramanian, D.A. Edwards, “Efficient
realization of strongly indicating function
blocks,” Proc. IEEE Computer Society Annual
Symposium on VLSI, pp. 429-432, 2008.

[17] P. Balasubramanian, D.A. Edwards, “A new
design technique for weakly indicating function
blocks,” Proc. 11th IEEE Workshop on Design
and Diagnostics of Electronic Circuits and
Systems, pp. 116-121, 2008.

[18] C.F. Brej, J.D. Garside, “Early output logic
using anti-tokens,” Proc. 12th International
Workshop on Logic and Synthesis, pp. 302-309,
2003.

[19] P. Balasubramanian, “A robust asynchronous
early output full adder,” WSEAS Transactions
on Circuits and Systems, vol. 10, no. 7, pp.
221-230, July 2011.

[20] P. Balasubramanian, N.E. Mastorakis,
“Analyzing the impact of local and global
indication on a self-timed system,” Proc. 5th
European Computing Conference, pp. 85-91,
2011.

[21] P. Balasubramanian, N.E. Mastorakis, “Global
versus local weak-indication self-timed
function blocks – a comparative analysis,”
Proc. 10th International Conference on
Circuits, Systems, Signal and
Telecommunications, pp. 86-97, 2016.

[22] Synopsys Digital Standard Cell Library
SAED_EDK32/28_CORE Databook, 2012.

[23] D.E. Muller, W.S. Bartky, “A theory of
asynchronous circuits,” Proc. International
Symposium on the Theory of Switching, Part I,
pp. 204-243, Harvard University Press, 1959.

[24] P. Balasubramanian, R. Arisaka, “A set theory
based factoring technique and its use for low
power logic design,” International Journal of
Computer, Electrical, Automation, Control and
Information Engineering, vol. 1, no. 3, pp. 721-
731, 2007.

[25] P. Balasubramanian, R. Arisaka, H.R. Arabnia,
“RB_DSOP: a rule based disjoint sum of
products synthesis method,” Proc. 12th
International Conference on Computer Design,
pp. 39-43, 2012.

[26] P. Balasubramanian, N.E. Mastorakis, “A set
theory based method to derive network
reliability expressions of complex system
topologies,” Proc. Applied Computing
Conference, pp. 108-114, 2010.

[27] P. Balasubramanian, D.A. Edwards, “Self-
timed realization of combinational logic,” Proc.
19th International Workshop on Logic and
Synthesis, pp. 55-62, 2010.

[28] P. Balasubramanian, D.A. Edwards, W.B.
Toms, “Redundant logic insertion and latency
reduction in self-timed adders,” VLSI Design,
vol. 2012, Article ID 575389, pages 13, 2012.

[29] P. Balasubramanian, “Comments on “Dual-rail
asynchronous logic multi-level
implementation”,” Integration, the VLSI
Journal, vol. 52, no. 1, pp. 34-40, January
2016.

[30] P. Balasubramanian, K. Prasad, N.E.
Mastorakis, “Robust asynchronous
implementation of Boolean functions on the
basis of duality,” Proc. 14th WSEAS
International Conference on Circuits, pp. 37-
43, 2010.

[31] C. Jeong, S.M. Nowick, “Block-level
relaxation for timing-robust asynchronous
circuits based on eager evaluation,” Proc. 14th
IEEE International Symposium on
Asynchronous Circuits and Systems, pp. 95-
104, 2008.

[32] K.S. Stevens, R. Ginosar, S. Rotem, “Relative
timing,” IEEE Transactions on VLSI Systems,
vol. 11, no. 1, pp. 129-140, February 2003.

[33] G. Posser, G. Flach, G. Wilke, R. Reis, “Gate
sizing minimizing delay and area,” Proc. IEEE
Computer Society Annual Symposium on VLSI,
pp. 315-316, 2011.

[34] P. Balasubramanian, N.E. Mastorakis, “Timing
analysis of quasi-delay-insensitive ripple carry
adders – a mathematical study,” Proc. 3rd
European Conference of Circuits Technology
and Devices, pp. 233-240, 2012.

[35] P. Balasubramanian, N.E. Mastorakis, “QDI
decomposed DIMS method featuring
homogeneous/heterogeneous data encoding,”
Proc. International Conference on Computers,
Digital Communications and Computing, pp.
93-101, 2011.

[36] N.P. Singh, A Design Methodology for Self-
Timed Systems, M.Sc. thesis, MIT Laboratory

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS P. Balasubramanian

E-ISSN: 2224-266X 100 Volume 15, 2016

for Computer Science Technical Report TR-
258, 1981.

[37] J. Sparsø, J. Staunstrup, “Delay-insensitive
multi-ring structures,” Integration, the VLSI
Journal, vol. 15, no. 3, pp. 313-340, October
1993.

[38] W.B. Toms, Synthesis of Quasi-Delay-
Insensitive Datapath Circuits, PhD thesis, The
University of Manchester, 2006.

[39] W.B. Toms, D.A. Edwards, “A complete
synthesis method for block-level relaxation in
self-timed datapaths,” Proc. 10th International
Conference on Application of Concurrency to
System Design, pp. 24-34, 2010.

[40] B. Folco, V. Bregier, L. Fesquet, M. Renaudin,
“Technology mapping for area optimized quasi
delay insensitive circuits,” Proc. IFIP
International Conference on VLSI-SoC, pp.
146-151, 2005.

[41] P. Balasubramanian, D.A. Edwards, “A delay
efficient robust self-timed full adder,” Proc.
IEEE 3rd International Design and Test
Workshop, pp. 129-134, 2008.

[42] P. Balasubramanian, “A latency optimized
biased implementation style weak-indication
self-timed full adder,” Facta Universitatis,
Series: Electronics and Energetics, vol. 28, no.
4, pp. 657-671, December 2015.

[43] P. Balasubramanian, B. Raghavendra,
“Analysis of effect of pre-logic factoring on
cell based combinatorial logic synthesis,”
International Journal of Computer, Electrical,
Automation, Control and Information
Engineering, vol. 2, no. 5, pp. 1468-1473,
2008.

[44] P. Balasubramanian, K. Anantha, “Power and
delay optimized graph representation for
combinational logic circuits,” International
Journal of Computer Science, vol. 2, no. 1, pp.
47-53, 2007.

[45] P. Balasubramanian, R.T. Naayagi, A. Karthik,
B. Raghavendra, “Evaluation of logic network
representations for Achilles heel Boolean
functions,” International Journal of
Computers, Systems and Signals, vol. 9, no. 1,
pp. 42-55, 2008.

[46] P. Balasubramanian, R. Chinnadurai, M.R.
Lakshmi Narayana, “Minimization of dynamic
power consumption in digital CMOS circuits
by logic level optimization,” WSEAS
Transactions on Circuits and Systems, vol. 4,
no. 4, pp. 257-266, April 2005.

[47] P. Balasubramanian, R. Chinnadurai, M.R.
Lakshmi Narayana, “Effecting power
consumption reduction in digital CMOS

circuits by a hybrid logic synthesis technique,”
Proc. 4th WSEAS International Conference on
Electronics, Signal Processing and Control, pp.
132-137, 2005.

[48] J.D. Garside, “A CMOS VLSI implementation
of an asynchronous ALU,” Proc. IFIP WG10.5
Working Conference on Asynchronous Design
Methodologies, pp. 181-192, 1993.

[49] P. Balasubramanian, D.A. Edwards, “Power,
delay and area efficient self-timed multiplexer
and demultiplexer designs,” Proc. IEEE 4th
International Conference on Design and
Technology of Integrated Systems in Nanoscale
Era, pp. 173-178, 2009.

[50] P. Balasubramanian, D.A. Edwards, C. Brej,
“Self-timed full adder designs based on hybrid
input encoding,” Proc. 12th IEEE Symposium
on Design and Diagnostics of Electronic
Circuits and Systems, pp. 56-61, 2009.

[51] P. Balasubramanian, D.A. Edwards, “Dual-sum
single-carry self-timed adder designs,” Proc.
IEEE Computer Society Annual Symposium on
VLSI, pp. 121-126, 2009.

[52] P. Balasubramanian, D.A. Edwards,
“Heterogeneously encoded dual-bit self-timed
adder,” Proc. IEEE PhD Research in
Microelectronics and Electronics Conference,
pp. 120-123, 2009.

[53] P. Balasubramanian, C. Jacob Prathap Raj, S.
Anandhi, U. Bhavanidevi, N.E. Mastorakis,
“Mathematical modeling of timing attributes of
self-timed carry select adders,” Proc. 4th
European Conference of Circuits Technology
and Devices, pp. 228-243, 2013.

[54] P. Balasubramanian, D.A. Edwards, W.B.
Toms, “Self-timed multi-operand addition,”
International Journal of Circuits, Systems and
Signal Processing, vol. 6, no. 1, pp. 1-11, 2012.

[55] P. Balasubramanian, D.A. Edwards, H.R.
Arabnia, “Robust asynchronous carry
lookahead adders,” Proc. 11th International
Conference on Computer Design, pp. 119-124,
2011.

[56] P. Balasubramanian, D.A. Edwards, W.B.
Toms, “Self-timed section-carry based carry
lookahead adders and the concept of alias
logic,” Journal of Circuits, Systems and
Computers, vol. 22, no. 4, pp. 1350028:1-24,
April 2013.

[57] P. Balasubramanian, D. Dhivyaa, J.P.
Jayakirthika, P. Kaviyarasi, K. Prasad, “Low
power self-timed carry lookahead adders,”
Proc. 56th IEEE International Midwest
Symposium on Circuits and Systems, pp. 457-
460, 2013.

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS P. Balasubramanian

E-ISSN: 2224-266X 101 Volume 15, 2016

